Attachment and Invasion of Neisseria meningitidis to Host Cells Is Related to Surface Hydrophobicity, Bacterial Cell Size and Capsule
نویسندگان
چکیده
We compared exemplar strains from two hypervirulent clonal complexes, strain NMB-CDC from ST-8/11 cc and strain MC58 from ST-32/269 cc, in host cell attachment and invasion. Strain NMB-CDC attached to and invaded host cells at a significantly greater frequency than strain MC58. Type IV pili retained the primary role for initial attachment to host cells for both isolates regardless of pilin class and glycosylation pattern. In strain MC58, the serogroup B capsule was the major inhibitory determinant affecting both bacterial attachment to and invasion of host cells. Removal of terminal sialylation of lipooligosaccharide (LOS) in the presence of capsule did not influence rates of attachment or invasion for strain MC58. However, removal of either serogroup B capsule or LOS sialylation in strain NMB-CDC increased bacterial attachment to host cells to the same extent. Although the level of inhibition of attachment by capsule was different between these strains, the regulation of the capsule synthesis locus by the two-component response regulator MisR, and the level of surface capsule determined by flow cytometry were not significantly different. However, the diplococci of strain NMB-CDC were shown to have a 1.89-fold greater surface area than strain MC58 by flow cytometry. It was proposed that the increase in surface area without changing the amount of anchored glycolipid capsule in the outer membrane would result in a sparser capsule and increase surface hydrophobicity. Strain NMB-CDC was shown to be more hydrophobic than strain MC58 using hydrophobicity interaction chromatography and microbial adhesion-to-solvents assays. In conclusion, improved levels of adherence of strain NMB-CDC to cell lines was associated with increased bacterial cell surface and surface hydrophobicity. This study shows that there is diversity in bacterial cell surface area and surface hydrophobicity within N. meningitidis which influence steps in meningococcal pathogenesis.
منابع مشابه
'Small' talk: Opa proteins as mediators of Neisseria-host-cell communication.
Opa proteins are variable outer membrane proteins of Neisseria gonorrhoeae and Neisseria meningitidis that mediate tight interaction of these pathogens with human cells. They have emerged as a paradigm of a bacterial toolbox allowing recognition of different host receptors and orchestrating the cell type tropism displayed by pathogenic Neisseriae. Recent work has highlighted the molecular basis...
متن کاملGenome Wide Expression Profiling Reveals Suppression of Host Defence Responses during Colonisation by Neisseria meningitides but not N. lactamica
Both Neisseria meningitidis and the closely related bacterium Neisseria lactamica colonise human nasopharyngeal mucosal surface, but only N. meningitidis invades the bloodstream to cause potentially life-threatening meningitis and septicaemia. We have hypothesised that the two neisserial species differentially modulate host respiratory epithelial cell gene expression reflecting their disease po...
متن کاملIn silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis
Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...
متن کاملThe Neisseria meningitidis capsule is important for intracellular survival in human cells.
While much data exist in the literature about how Neisseria meningitidis adheres to and invades human cells, its behavior inside the host cell is largely unknown. One of the essential meningococcal attributes for pathogenesis is the polysaccharide capsule, which has been shown to be important for bacterial survival in extracellular fluids. To investigate the role of the meningococcal capsule in...
متن کاملThe sweet side of the pathogenic Neisseria: the role of glycan interactions in colonisation and disease
Glycomics is a rapidly growing field that focuses on the structure and function of carbohydrates (glycans) in biological systems. Glycan interactions play a major role in infectious disease, at all stages of colonisation and disease progression. Neisseria meningitidis, the cause of meningococcal sepsis and meningitis, and Neisseria gonorrhoeae, which causes the sexually transmitted infection go...
متن کامل